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Abstract
Under the dielectric continuum model, the confined bulklike longitudinal optical phonon modes
and electron–optical-phonon interaction of the isosceles right triangular (45◦–45◦–90◦)
quantum dot (wire) and hemi-equilateral triangular (30◦–60◦–90◦) quantum dot (wire) are
studied. The analytical expressions for the confined bulklike longitudinal optical phonon
eigenfunctions are deduced. After having quantized the polarization eigenvectors, we derive the
Hamiltonian operators describing the confined bulklike longitudinal optical phonon modes and
their interactions with electrons. The potential applications of these results are also discussed.

1. Introduction

In recent years, many methods such as metal-organic chemical
vapour deposition, molecular beam epitaxy, and vapour–
liquid–solid growth have been developed for fabricating
nanomaterials with a wide range of sizes, shapes, and dielectric
environments. PbSe, CdS, and NiS triangular nanoprisms
(nanotriangles) [1–3], and GaN and n-GaN/InGaN/p-GaN
triangular nanowires [4, 5] have been synthesized. Because
of the special physical properties, they show successful and
potential applications in a wide variety of fields, such as
nanowire lasers [6], optical biosensors [7] and photothermal
agents [8]. The optoelectronic and physicochemical properties
of nanomaterials are a strong function of particle size.
The nanomaterials shape also contributes significantly to
modulating their physical properties. Nanomaterials of
different shapes have different crystallographic facets and
different fractions of surface atoms on their corners and edges,
which makes it interesting to research the effect of shape on
their physical properties. On the other hand, the polar vibration
modes and electron–phonon interaction play a key role in many
physical properties of polar crystals, such as the binding energy
of impurities, carrier transportation, linear and non-linear
optical properties, especially in low-dimensional materials.
Hence, an analytic description of polar optical phonon modes

1 Author to whom any correspondence should be addressed.

and the electron–phonon interaction Hamiltonian for quantum
systems of complex shapes is essential.

There are several theoretical models, such as the dielectric
continuum model [9–13], hydrodynamic model [14], and
microscopic calculation model [15, 16] used for studying
phonon modes and electron–phonon interaction in various
low-dimensional quantum systems. The dielectric continuum
model has been widely used for its simplicity and efficiency.
Mori and Ando [17] deduced the phonon modes in single and
double heterostructures. Knipp and Reinecke [18] studied
the interface optical (IO) phonon modes in a quantum wire
with elliptical cross sections. Xie et al [19, 20] determined
the IO and surface optical (SO) phonon modes in a free-
standing cylindrical quantum wire and an embedded quantum
well wire. Klein et al [21] and Roca et al [22] derived
the polar optical phonon modes in a spherical quantum dot.
de la Cruz et al [23] obtained the IO phonon mode in a
GaAs/Alx Ga1−x As spherical quantum dot. Shi et al [24, 25]
studied both the IO and propagating optical phonon modes in
wurtzite GaN/AlxGa1−xN quantum wells. Li and Chen [26]
deduced the confined bulklike longitudinal optical (LO), top
surface optical (TSO) and side surface optical (SSO) phonon
modes in a cylindrical quantum dot. Zhang et al [27] derived
the phonon modes in a quantum dot quantum well. Kanyinda-
Malu et al [28] derived the axial interface optical phonon
modes in a double-nanoshell system. Wu and Xie [29]
worked out the confined bulklike LO, TSO and SSO phonon
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modes in a quantum annulus. Recently, we [30] studied
the confined bulklike LO phonon modes in the equilateral
triangular quantum dot and quantum wire. In this paper, we
extend the previous work to the isosceles right triangular (45◦–
45◦–90◦) quantum dot (wire) and hemi-equilateral triangular
(30◦–60◦–90◦) quantum dot (wire) systems.

The paper is organized as follows: in section 2, the
confined bulklike LO phonon modes and the corresponding
Fröhlich electron–phonon interaction Hamiltonian of the
isosceles right triangular quantum dot (IRTQD) and quantum
wire (IRTQW) are deduced. In section 3, by the
theoretical scheme of the IRTQD and IRTQW, we derive the
confined bulklike LO phonon modes and the corresponding
Fröhlich electron–phonon interaction Hamiltonian of the hemi-
equilateral triangular quantum dot (HETQD) and quantum
wire (HETQW). In section 4, the potential applications of these
results are discussed.

2. The confined bulklike LO phonon modes of the
IRTQD and the IRTQW

Under the dielectric continuum approximation, we start with
the electrostatic equations

E = −∇φ(r), (1)

D = εE = E + 4πP, (2)

∇ · D = 4πρ0(r), (3)

where D, E and P are the electric displacement, electric field
strength and electric polarization density, respectively. φ, ρ0

and ε are the electric potential, the free charge density and the
dielectric constant, respectively. For free oscillation, the charge
density ρ0(r) = 0, so we get the following equation

ε∇2φ(r) = 0. (4)

There are two possible solutions for equation (4), one of
which is

ε(ω) = 0, (5)

the other is
∇2φ(r) = 0. (6)

In this paper, we only focus on the first solution. Since in
a polar crystal,

ε(ω) = ε∞ + ε0 − ε∞
1 − ω2/ω2

TO

, (7)

where ε0, ε∞ are the static and high-frequency dielectric
constants and ωTO is the frequency of the transverse optical
phonon, ε(ω) = 0 would give

ω2 = ω2
TO

ε0

ε∞
= ω2

LO. (8)

Equation (8) is just the Lyddane–Sachs–Teller (LST)
relation, which describes the confined bulklike LO phonon
vibration modes of frequency ω = ωLO.

Figure 1. The geometry of the IRTQD.

2.1. The confined bulklike LO phonon modes of the IRTQD

Firstly, we investigate an IRTQD of a polar semiconductor
placed in a vacuum. The geometry of the IRTQD is shown in
figure 1. The height is 2d . The IRTQD cross section has side
lengths a. The dielectric constant is assumed to be isotropic.

In the IRTQD, the electric potential φ(r) in equation (4)
is an arbitrary function of x , y, z. Owing to the electrostatic
boundary conditions that the tangential component of E and
the normal component of D are continuous at the boundary and
equation (5), the electric potential φ(r) should be zero at the
boundary and in the region outside. According to the geometry
of the quantum dot, the electric potential φ(r) can be taken as

φ(r) = �(x, y) f (z), (9)

f (z) =
{

C cos(kzz) + D sin(kzz) for −d � z � d ,

0 otherwise,
(10)

where kz is the phonon wavevector in the z direction. C , D and
kz are to be determined by the boundary conditions. Since the
plane z = 0 possesses reflectional symmetry, the electrostatic
potential should be either symmetric or antisymmetric about
this plane. The boundary conditions match in two ways: either
C = 0 or D = 0. So, we have two solutions for f (z):

f S(z) = C cos

(
nπ

2d
z

)
, n = 1, 3, 5, . . . , (11)

and

f A(z) = D sin

(
nπ

2d
z

)
, n = 2, 4, 6, . . . . (12)

However, the IRTQD cross section function �(x, y) is
not solvable by a separation of variables. As a matter of fact,
the cross section function problem is similar to the quantum
mechanical problem of a particle in an isosceles right triangle
(billiard). On the other hand, the isosceles right triangle can
be obtained by subdividing a square along a diagonal. The
eigenfunctions of an isosceles right triangle can be deduced by
linear combinations of these solutions of the square, which can
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be found in these articles [31–33]. In this paper, we use the
results of Li [31].

�+
lm(x, y) = 1√

2

[
sin

(
lπx

a

)
sin

(
mπy

a

)

+ sin

(
mπx

a

)
sin

(
lπy

a

)]
, (13)

where m = 1, 2, 3, . . ., l = m + 1, m + 3, . . ., and

�−
lm(x, y) = 1√

2

[
sin

(
lπx

a

)
sin

(
mπy

a

)

− sin

(
mπx

a

)
sin

(
lπy

a

)]
, (14)

where m = 1, 2, 3, . . ., l = m + 2, m + 4, . . ..
So, the eigenfunctions of the confined bulklike LO

phonons can be chosen as

φS+
lmn =

{
Clmn�

+
lm(x, y) f S(z) in IRTQD,

0 otherwise,
(15)

φS−
lmn =

{
Clmn�

−
lm(x, y) f S(z) in IRTQD,

0 otherwise,
(16)

for n = 1, 3, 5, . . ., and

φA+
lmn =

{
Clmn�

+
lm(x, y) f A(z) in IRTQD,

0 otherwise,
(17)

φA−
lmn =

{
Clmn�

−
lm(x, y) f A(z) in IRTQD,

0 otherwise,
(18)

for n = 2, 4, 6, . . ..
The polarization vectors for the confined bulklike LO

mode are calculated by considering equations (1) and (2) with
the condition ε = 0. We get

Pσ
lmn = 1

4π
∇φσ

lmn, σ = S+, S−, A+, A − . (19)

To derive the expression for the Hamiltonian of the free-
phonon field, we start with the dynamic equations of motion of
the crystal lattice [11]

μü = −μω2
0u + eEloc, (20)

P = n peu + n pαEloc, (21)

where μ = m+m−/(m+ + m−), u = u+ − u−, ω0 and n p

are the reduced mass of the ion pair, the relative displacement
of the positive and negative ions, the frequency associated with
the short-range force between ions and the number of ion pairs
per unit volume, respectively. α, Eloc and P are the electronic
polarizability per ion pair, the local field at the position of the
ions and the polarization field produced by the oscillating ions,
respectively. The Hamiltonian of the free vibration is given by

Hph = 1
2

∫ [
n pμu̇ · u̇ + n pμω2

0u · u − n peu · Eloc

]
d3r.

(22)

Using the well-known Lorentz relation Eloc = E + 4πP/3
and the relation E = −4πP, we have

Eloc = − 8
3πP, (23)

u = 1 + 8
3πn pα

n pe
P. (24)

Substituting equations (23) and (24) into equation (20), we
can obtain

ü + ω2
LOu = 0, (25)

where

ω2
LO = ω2

0 + 8

3

πn pe2/μ

1 + 8
3πn pα

. (26)

Hence, the confined bulklike LO phonon Hamiltonian
from equation (22) can be written as

HLO = 1

2

∫ [
n pμ

(
1 + 8

3πn pα

n pe

)2 (
Ṗ∗ · Ṗ + ω2

LOP∗ · P
)]

d3r.

(27)
The confined bulklike LO polarization vectors form an

orthonormal set∫
Pσ ′∗

l′m′n′ · Pσ

lmn
d3r = 1

16π2

∫
∇φσ ′∗

l′m′n′ · ∇φσ
lmn d3r

= −1

16π2

∫
φσ ′∗

l′m′n′∇2φσ
lmn d3r, (28)

in which we use Green’s first identity:∫
V

∇φ · ∇ϕ d3r = −
∫

V
φ∇2ϕ d3r +

∫
S
φ

∂ϕ

∂n
dS. (29)

In our case φ ≡ 0 (on the boundary), so that the second
term equals zero. We get∫

Pσ ′∗
l′m′n′ · Pσ

lmn
d3r = [4(l2 + m2)d2 + n2a2]

512d
δσσ ′δll′δmm′δnn′.

(30)
If we choose Clmn to be

C2
lmn = 256d

n pμ[4(l2 + m2)d2 + n2a2]

(
n pe

1 + 8
3πn pα

)2

= 64dω2
LO

π[4(l2 + m2)d2 + n2a2]
(

1

ε∞
− 1

ε0

)
, (31)

in which we use the ωTO relation [11]

ω2
TO = ω2

0 − 4

3

πn pe2/μ

1 − 4
3πn pα

, (32)

and the Clausius–Mossotti relation

ε∞ = 1 + 4πn pα

1 − 4
3πn pα

, (33)

then the confined bulklike LO polarization vectors may form an
orthonormal and complete set. We can express the polarization
field P in terms of the complete set of orthonormal polarization
modes Pσ

lmn

P =
∑
lmn

(
h̄

ωLO

) 1
2

(a†
lmn + almn)Plmn, (34)

3
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Figure 2. The geometry of the IRTQW.

Ṗ = −i
∑
lmn

(h̄ωLO)
1
2 (a†

lmn − almn)Plmn, (35)

where P and Ṗ are now quantum field operators. a†
lmn and

almn are creation and annihilation operators for the confined
bulklike LO phonon of the (l, m, n)th mode. They satisfy the
boson commutation relation

[almn, a†
l′m′n′ ] = δll′δmm′δnn′, (36)

[almn, al′m′n′ ] = [a†
lmn, a†

l′m′n′ ] = 0. (37)

Hence, from equations (34)–(37), the Hamiltonian
operator for the confined bulklike LO phonon becomes

HLO =
∑
lmn

h̄ωLO(a†
lmnalmn + 1

2 ). (38)

The electric potential can be expanded as

φLO =
∑
lmn

(
h̄

ωLO

) 1
2

(almnφ
σ
lmn + h.c), (39)

where h.c means the hermitian conjugate.
The Fröhlich Hamiltonian between the electron and the

confined bulklike LO phonon can then be written as

He−LO = −eφLO = −
∑
lmn

(
lmn a†
lmnφ

σ
lmn + h.c), (40)

where


2
lmn = 64de2h̄ωLO

π[4(l2 + m2)d2 + n2a2]
(

1

ε∞
− 1

ε0

)
. (41)

2.2. The confined bulklike LO phonon modes of the IRTQW

For the IRTQW, a parallel development is possible for the
determination of the confined bulklike LO phonon mode. Since
the IRTQW (see the figure 2) has a translational symmetry
along the z direction, the eigenfunctions of the confined
bulklike LO phonons can be chosen as

φlmk =
{

Clmk�
±
lm(x, y)eikz in IRTQW,

0 otherwise,
(42)

where k is the phonon wavevector in the z direction. The
polarization vectors for the confined bulklike LO mode are

P±
lmk = 1

4π
∇φ±

lmk . (43)

The confined bulklike LO polarization vectors form an
orthonormal and complete set:∫

2n pμ

(
1 + 8

3πn pα

n pe

)2

Pi∗
l′m′k′ · P j

lmk
d3r = δi jδll′δmm′δkk′ ,

(44)

C2
lmk = 64π2

Lzn pμ[(l2 + m2)π2 + k2a2]

(
n pe

1 + 8
3πn pα

)2

= 16πω2
LO

Lz[(l2 + m2)π2 + k2a2]
(

1

ε∞
− 1

ε0

)
, (45)

where Lz is the length of the IRTQW.
The polarization field P can be expressed in terms of the

complete set of orthonormal polarization modes P±
lmk

P =
∑
lmk

(
h̄

ωLO

) 1
2

(a†
lmk + almk)Plmk , (46)

Ṗ = −i
∑
lmk

(h̄ωLO)
1
2 (a†

lmk − almk)Plmk , (47)

where P and Ṗ are now quantum field operators. a†
lmk and

almk are creation and annihilation operators for the LO phonon
of the (l, m, k)th mode. They satisfy the boson commutation
relation

[almk , a†
l′m′k′ ] = δll′δmm′δkk′ , (48)

[almk, al′m′k′ ] = [a†
lmk, a†

l′m′k′ ] = 0. (49)

The Hamiltonian operator for the confined bulklike LO
phonon becomes

HLO =
∑
lmk

h̄ωLO(a†
lmkalmk + 1

2 ). (50)

The electric potential can be expanded as

φLO =
∑
lmk

(
h̄

ωLO

) 1
2

(almkφ
±
lmk + h.c). (51)

The Fröhlich Hamiltonian between the electron and the
confined bulklike LO phonon can then be written as

He−LO = −eφLO = −
∑
lmk

(
lmk a†
lmkφ

±
lmk + h.c), (52)

where


2
lmk = 16π h̄ωLOe2

Lz[(l2 + m2)π2 + k2a2]
(

1

ε∞
− 1

ε0

)
. (53)

4
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Figure 3. The geometry of the HETQD.

3. The confined bulklike LO phonon modes of the
HETQD and HETQW

By the theoretical scheme of the IRTQD and IRTQW,
we can derive the confined bulklike LO phonon modes
and the corresponding Fröhlich electron–phonon interaction
Hamiltonian of the HETQD and HETQW.

3.1. The confined bulklike LO phonon modes of the HETQD

We consider an HETQD (see figure 3) of a polar semiconductor
placed in a vacuum. The height and hypotenuse of the HETQD
cross section are 2d and a, respectively. The dielectric constant
is assumed to be isotropic. Similar to the procedure for the
IRTQD, the electric potential φ(r) can be written as

φ(r) = �(x, y) f (z), (54)

where f (z) are equations (11) and (12). However, the
HETQD cross section function �(x, y) is not solvable by
the separation of variables. As a matter of fact, the cross
section function problem is similar to the quantum mechanical
problem of a particle in an hemi-equilateral triangle (billiard).
On the other hand, the hemi-equilateral triangle can be
obtained by subdividing the equilateral triangle along an
altitude. Because these eigenfunctions of the equilateral
triangle can be decomposed into a symmetric part and an
antisymmetric part, the eigenfunctions of the hemi-equilateral
triangle are deduced by simply restricting the antisymmetric
modes of the equilateral triangle to this domain. The
eigenfunctions of the hemi-equilateral triangle can be written
as �lm(x, y) [30, 32, 34, 35].

�lm(x, y) = sin

(√
3πm

A
x

)
sin

[
(2l + m)π

A
y

]

− sin

(√
3πl

A
x

)
sin

[
(2m + l)π

A
y

]

+ sin

[√
3π(l + m)

A
x

]
sin

[
(l − m)π

A
y

]
, (55)

where A = √
3a/2 is the altitude of the equilateral triangle.

m = 1/3, 2/3, 1, 4/3, 5/3, . . ., l = m + 1, m + 2, . . ..

So, the eigenfunctions of the confined bulklike LO
phonons can be chosen as

φS
lmn =

{
Clmn�lm(x, y) f S(z) in HETQD,

0 otherwise,
(56)

for n = 1, 3, 5, . . ., and

φA
lmn =

{
Clmn�lm(x, y) f A(z) in HETQD,

0 otherwise,
(57)

for n = 2, 4, 6, . . ..
The polarization vectors for the confined bulklike LO

mode are calculated by considering equations (2) and (1) and
the condition ε = 0. We get

Pσ
lmn = 1

4π
∇φσ

lmn, σ = S, A. (58)

The confined bulklike LO polarization vectors from
equation (58) form an orthonormal set:∫

Pσ ′∗
l′m′n′ · Pσ

lmn
d3r =

√
3[16(l2 + m2 + lm)d2 + n2 A2]

512d
× δσσ ′δll′δmm′δnn′ . (59)
If we choose Clmn to be

C2
lmn = 256d√

3n pμ[16(l2 + m2+lm)d2 + n2 A2]
(

n pe

1+ 8
3πn pα

)2

= 64dω2
LO√

3π[16(l2 + m2 + lm)d2 + n2 A2]
(

1

ε∞
− 1

ε0

)
, (60)

then the confined bulklike LO polarization vectors may form an
orthonormal and complete set. We can express the polarization
field P in terms of the complete set of orthonormal polarization
modes Pσ

lmn

P =
∑
lmn

(
h̄

ωLO

) 1
2

(a†
lmn + almn)Plmn, (61)

Ṗ = −i
∑
lmn

(h̄ωLO)
1
2 (a†

lmn − almn)Plmn, (62)

where P and Ṗ are now quantum field operators. a†
lmn and

almn are creation and annihilation operators for the confined
bulklike LO phonon of the (l, m, n)th mode. They satisfy the
boson commutation relation (equations (36) and (37)).

The Hamiltonian operator for the confined bulklike LO
phonon becomes

HLO =
∑
lmn

h̄ωLO(a†
lmnalmn + 1

2 ). (63)

The electric potential can be expanded as

φLO =
∑
lmn

(
h̄

ωLO

) 1
2

(almnφ
σ
lmn + h.c). (64)

The Fröhlich Hamiltonian between the electron and the
confined bulklike LO phonon can then be written as

He−LO = −eφLO = −
∑
lmn

(
lmn a†
lmnφ

σ
lmn + h.c), (65)

where


2
lmn = 64de2h̄ωLO√

3π[16(l2 + m2 + lm)d2 + n2 A2]
(

1

ε∞
− 1

ε0

)
.

(66)

5
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Figure 4. The geometry of the HETQW.

3.2. The confined bulklike LO phonon modes of the HETQW

Since the HETQW (see figure 4) is translationlly invariant in
the z direction, the eigenfunctions of the confined bulklike LO
phonons can be chosen as

φlmk =
{

Clmk�lm(x, y)eikz in HETQW,

0 otherwise,
(67)

where k is the phonon wavevector in the z direction. The
polarization vectors for the confined bulklike LO mode are

Plmk = 1

4π
∇φlmk . (68)

The confined bulklike LO polarization vectors form an
orthonormal and complete set∫

2n pμ

(
1 + 8

3πn pα

n pe

)2

P∗
l′m′k′ · Plmk d3r = δll′δmm′δkk′ , (69)

C2
lmk = 64π2

√
3Lzn pμ[4(l2+m2+lm)π2 + k2 A2]

(
n pe

1+ 8
3πn pα

)2

= 16πω2
LO√

3Lz[4(l2 + m2 + lm)π2 + k2 A2]
(

1

ε∞
− 1

ε0

)
, (70)

where the Lz is the length of the HETQW.
The polarization field P can be expressed in terms of the

complete set of orthonormal polarization modes Plmk

P =
∑
lmk

(
h̄

ωLO

) 1
2

(a†
lmk + almk)Plmk , (71)

Ṗ = −i
∑
lmk

(h̄ωLO)
1
2 (a†

lmk − almk)Plmk , (72)

where P and Ṗ are now quantum field operators. a†
lmk and

almk are creation and annihilation operators for the confined
bulklike LO phonon of the (l, m, k)th mode. They satisfy the
boson commutation relation (equations (48) and (49)).

The Hamiltonian operator for the confined bulklike LO
phonon becomes

HLO =
∑
lmk

h̄ωLO(a†
lmkalmk + 1

2 ). (73)

The electric potential can be expanded as

φLO =
∑
lmk

(
h̄

ωLO

) 1
2

(almkφlmk + h.c). (74)

The Fröhlich Hamiltonian between the electron and the
confined bulklike LO phonon can then be written as

He−LO = −eφLO = −
∑
lmk

(
lmk a†
lmkφlmk + h.c), (75)

where


2
lmk = 16πe2h̄ωLO√

3Lz[4(l2 + m2 + lm)π2 + k2 A2]
(

1

ε∞
− 1

ε0

)
.

(76)

4. Summary and discussion

In this paper, we derived the exact formulations for the
confined bulklike LO phonon modes, the Hamiltonian
operators for the confined bulklike LO phonon and the Fröhlich
Hamiltonian between the electron and the confined bulklike
LO phonon in the isosceles right triangular (45◦–45◦–90◦)
quantum dot (wire) and the hemi-equilateral triangular (30◦–
60◦–90◦) quantum dot (wire). This is a starting point for the
study of the polaron effect, bound polaronic effect, exciton–
phonon effect, and other phonon-assisted physical processes
in triangular quantum systems. For example, with the Fermi
golden rule, we can use the formulations to study the electron–
LO–phonon scattering rates.

As we know, we did not treat the second solution
(equation (6)) in this paper, which would give the surface
optical phonon modes of the isosceles right triangular quantum
dot (wire) and hemi-equilateral triangular quantum dot (wire).
On the other hand, if we consider the case of the isosceles right
triangular quantum dot (wire) and hemi-equilateral triangular
quantum dot (wire) with a finite barrier, such as these
quantum dots and quantum wires surrounded by other polar
semiconductors, we can deduce the interface phonon modes of
these quantum dots and quantum wires. All these are part of
a future research project. It is well known that the ability to
model the phonon modes in dimensionally confined structures
has been the basis for efforts to design nanostructures such
that the resulting carrier and phonon states are tailored to yield
dissipative and scattering mechanisms different from those
of the corresponding bulk structures [36]. We hope these
results will stimulate the study of the influence of phonons on
physical properties in quantum dot and quantum wire systems
of complex shapes.
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